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You might be familiar with the adage, “All models are wrong, but some are useful.” No

matter how complex and fine‐tuned, the models we use and rely on in science are

approximations that sometimes fail to capture the intricacies and vagaries of the

natural world.

This is especially true of phenomena like soil nitrous oxide (N O) emissions. A potent

greenhouse gas, N O is produced by microbes in soil and can be forecast by familiar

biogeochemical process‐based models like DayCent (

https://www.nrel.colostate.edu/projects/century/), EPIC (“Environmental Policy

Integrated Climate”; https://epicapex.tamu.edu/epic/), and DNDC (“DeNitrification‐

DeComposition”; https://www.dndc.sr.unh.edu/).
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But while N O’s growing abundance in the atmosphere is chiefly tied to agriculture, it’s

hard to predict how emissions will respond to changed management with these

simulations. For example, in a 2021 paper based on research conducted at Michigan

State University, soil biogeochemist and ASA and SSSA member Debasish Saha found

that only around 20% of the variability in past N O emissions cropping studies he

reviewed could be explained by the commonly used process‐based cropping system

models. “That’s low given the large impact of N O on greenhouse gas budgets and

indicates large uncertainty of the simulation models,” says Saha, now an assistant

professor at the University of Tennessee, Knoxville.

2

2

2

https://www.nrel.colostate.edu/projects/century/
https://epicapex.tamu.edu/epic/
https://www.dndc.sr.unh.edu/


Now, researchers are turning to machine learning (ML) to shore up these predictions

and improve our fundamental understanding of soil N O dynamics. In a new study (

https://doi.org/10.1002/agj2.21185), published as part of the recent Agronomy Journal

special section “Machine Learning in Agriculture,” researchers applied ML algorithms to

predict emissions from a rye cover crop. And a new project, recently funded by the

USDA and led by Saha, will use global data and ML to improve N O flux prediction

methods.
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“If your model is accurate enough, then you can adapt or adjust your management

practices and maybe be able to mitigate some of the large emissions,” says Saha, who

was not involved with the Agronomy Journal paper. “We can avoid some of the large

peaks that are mostly due to anthropogenic activities.”

Uncovering Emissions

It’s hard to turn the pages of CSA News magazine without encountering an article

about cover crops. Over the last 40 years (

https://acsess.onlinelibrary.wiley.com/doi/10.1002/csan.21072), research into their

impacts and benefits has surged. Studies show that cover crops can help with carbon

sequestration, improve soil fertility, bolster against erosion, and even protect water

quality.

But while cover cropping is often touted as climate‐smart agriculture, there’s no

blanket evidence dictating that the practice decreases emissions, says Deepak Joshi,

first author on the Agronomy Journal paper and a Society member. “There have been a

lot of studies done on soil health and cover crops. But … there was not clear evidence

about whether cover crops are a sink or source of greenhouse gas emissions,” Joshi

says.

https://doi.org/10.1002/agj2.21185
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One reason for this obscurity is the elusive

task of continuously measuring emissions. In

their Agronomy Journal publication, Joshi and

his colleagues used an automated chamber

system to gather soil gas emissions six times

a day for six months.

“Also, most other studies don’t separate

before termination and after termination,”

says Joshi, who completed the study while at

South Dakota State University and is now an

assistant professor of precision ag and

remote sensing at Arkansas State University.

Once cover crops are terminated and begin

to decompose, they release inorganic

nitrogen and organic substrates. This may

increase emissions. To understand the full

picture of cover crops’ contribution to a

system’s greenhouse gas output, studying emissions across the entire season is

critical, Joshi explains.

“When we talk about greenhouse gas emissions, we usually talk about carbon dioxide

emissions,” Joshi says. But N O, the same stuff in dental laughing gas, is particularly

potent, he explains. With a global warming potential of 273, 1 ton of N O absorbs 273

times more energy than 1 ton of CO  in the atmosphere. Agricultural emissions and

emissions from natural soils combined comprise 56–70% of all the world’s N O

sources. And while it’s relatively rarer in the atmosphere than the well‐known CO ,

atmospheric N O is increasing at a rate 44% higher than it was two decades ago.
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Deepak Joshi, assistant professor of

remote sensing and precision

agriculture at Arkansas State

University, sets up LI-COR long-

term chambers in the field for

continuous CO2 and N2O emissions

measurements. Photo courtesy of

Deepak Joshi.



Microbes and Models

In soils, N O is produced mainly by microbes during nitrification as the by‐product of

the incomplete conversion of nitrate to harmless N  gas. Each step of this process is

carried out via different enzymes encoded by certain microbial genes; many microbes

can both produce and consume N O. Their output—innocuous N  or troublesome N

O—depends on a delicate dance of substrate and environmental variables.

Management actions, like tillage and the application of fertilizer, and environmental

conditions, like temperature and soil moisture, all have a major effect on soil N O

fluxes.
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“The fluxes are very variable in space and in time,” Saha explains. Most of the time,

emissions are low. “And then there are some peak moments—we call them ‘hot

moments’: that’s when this flush of these greenhouse gases, mainly N O, comes in.

Those peak moments can expand from a few days to a few weeks. They have a huge

contribution to the total flux, so it’s really important to understand why these ‘hot’

moments were created in the soil and what makes it ‘hotter.’”
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Models like DayCent take inputs including air

temperature, precipitation, surface soil

texture, and land use and management

information to simulate

soil–plant–atmospheric cycling of water,

nitrogen, and carbon. But the challenges

compound because it was only in 2012 that

researchers found there was a certain group of microbes that could only consume N O

and could not produce it. Aside from being of “tremendous climate interest,” this

discovery illustrates a risk with process‐based models: you might be missing some

piece of the big, messy puzzle, Saha says. “Our fundamental understanding of soil N O

cycling is evolving. That has a direct connection with the mathematical models and

their limitation in accurately predicting N O dynamics.”
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A type of artificial intelligence, ML involves training statistical algorithms to recognize

patterns in data and make predictions as a result. In contrast to a process‐based

model, an ML algorithm learns to make predictions regardless of how well we humans

understand the underlying biological process, Saha says. You are just feeding the data

to an algorithm and telling it: “Go figure it out.” Thus far, this application of ML has not

been possible mainly due to lack of data availability. That’s changing with technological

revolutions in sensing and automated data collection and with the research

community moving towards open‐source research and data sharing, Saha says.

Researchers measuring in-situ soil

greenhouse gas fluxes from cover

crops using a semi-autonomous

closed loop measurement system at

the University of Tennessee,

Knoxville. Photo courtesy of the

University of Tennessee Institute of

Agriculture (UTIA).

Seeing the Forest for the Trees

That’s just what Joshi and his colleagues did with data from their study of cover crops

in South Dakota. For two years, the team planted winter cereal rye (Secale cereale) in

October and corn (Zea mays) the following spring, terminating the rye in June and



harvesting the corn in the fall. Throughout, they measured greenhouse gas emissions

from soil using the automatic chamber system and collected other data, including soil

carbon and nitrogen content, soil microbial composition, soil and air temperature, and

rainfall.

They found that while growing, the cover

crop reduced N O emissions. After

termination, as the rye decomposed,

microbial activity swelled and emissions

increased. But when they combined both

growing phases into a single analysis, they

found no significant difference in N O

emission from the cover crop compared with the no‐cover crop treatment. “We found

clear evidence that when do[ing] greenhouse emission studies in cover crops, we need

to split the two different growth states separately,” Joshi explains. “We need to study

those phases separately before termination and after termination.”
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Those results will no doubt be helpful in guiding future cover crop studies. But Joshi

decided to take a step further and use the experiments to test five different ML

models’ abilities to predict greenhouse gas emissions. If the researchers input the

environmental data they collected—the air temperature, soil temperature, soil

moisture, rainfall, and more—from a particular time point, could an ML model

accurately predict what the emissions at that time point had been?

The team used 75% of their dataset to train the ML models. They then fed the other

25% of their data to the models to test their predictive abilities. One, the random

forest model, outshone the rest. This method splits the data into a forest’s worth of

decision trees based on variables the model determined are important, cascading
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down this set of branched questions and answers to output a prediction based on

what it’s “learned” from past data. The random forest model correctly predicted N O

emissions 73% of the time and CO  emissions 85% of the time. By comparison, “with a

traditional model, we were able to predict almost by 30%,” Joshi says.
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Going Global

Saha has found similar results in his own work. In his 2021 paper published in

Environmental Research Letters (https://dx.doi.org/10.1088/1748‐9326/abd2f3), he

applied random forest models to six years’ worth of automated‐chamber N O data

from corn‐growing sites in Michigan and Wisconsin and found they could explain

65–89% of daily emission fluxes. Saha also applied the models to data from a totally

different cropping system that the model was not trained on, a corn–soybean–wheat

rotation. In this case, the model could only explain 38% of the site’s N O flux variability.
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This lack of generalizability is the next hurdle

to clear for scientists interested in building

strong ML models for N O emissions

predictions, Saha says, and limits how

applicable the results from the Agronomy

Journal study can be. Joshi concurs: “We

need to test this in different climactic zones

… so that we can say, OK, this model can be used everywhere,” he says.
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“There is a need for integration of studies like this and datasets like this,” Saha adds.

“Can you take this model and predict N O emissions from cotton in Tennessee? No,

probably not. If I have some data from Tennessee, some from California, some from

Iowa, that will probably be more helpful for the model to improve the generalizability

because we are talking about different soils, different climates, different management
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practices.”

He’s hoping to tackle this problem head‐on with his new project, a partnership with

Michigan State and Penn State University, that will involve gathering available N O flux

data from collaborating labs around the globe that also use the automated chamber

system. The team will use those measurements, from diverse soils, cropping systems,

and environments in Australia, Denmark, Spain, and beyond, to train and develop

powerful ML models for emissions predictions.
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They’ll also combine ML and traditional models to see how process‐based models can

be improved by what the ML models “learn” about relationship between the variables.

“We will try to actually improve or modify the functional relationship that is already in

the process models based on the learning by the ML model on the global dataset,”

Saha explains. Joshi is also exploring this in his own work. The goal is, “can we combine

both models together to have a better prediction accuracy?” he says.

And finally, Saha’s effort will also culminate in a publicly available database of these

high‐resolution measurements so that researchers far and wide can test and enhance

N O prediction methods. “Not everyone has the luxury to have these kinds of data,” he

says. And “the more data you have, and the more data from diverse conditions, the

model will learn better.”
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DIG DEEPER

The research featured in this article is from an upcoming special section in

Agronomy Journal on “Machine‐Learning in Agriculture.” Some papers from the

special section can be viewed online now within the Early View section of the

journal: https://acsess.onlinelibrary.wiley.com/toc/14350645/0/0. The journal

https://acsess.onlinelibrary.wiley.com/toc/14350645/0/0


article specifically highlighted here is:

Joshi, D. R., Clay, D. E., Clay, S. A., Moriles‐Miller, J., Daigh, A. L. M., Reicks, G., &

Westhoff, S. (2022). Quantification and machine learning based N O–N and CO –C

emissions predictions from a decomposing rye cover crop. Agronomy Journal.

https://doi.org/10.1002/agj2.21185
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